

03. If f(x) is continuous at x = 2, then find f(2) where $f(x) = \frac{x^5 - 32}{x - 2}, \quad x \neq 2$ SOLUTION : STEP 1 Lim f(x) $x \rightarrow 2$ $= \lim_{x \to 2} \frac{x^5 - 32}{x - 2}$ $= \lim_{x \to 2} \frac{x^5 - 2^5}{x - 2}$ $= 5(2)^{5-1}$ $= 5(2)^4 = 80$ STEP 2 : Since function is continuous at x = 2 $f(2) = \lim_{x \to 2} f(x) = 80$

04. the total revenue $R = 10800x - 4x^3$ where x is number of units sold . Find x for which total revenue R is increasing

solution :	R = 10800 - 4x3
	For Revenue Increasing ,
	dR > 0 dx
	$10800 - 12x^2 > 0$
	$10800 > 12x^2$
	900 > x2
	x ² > 900
	x > 30

05. if p : It is raining

q : It is humid

Write the following statements in the symbolic form

a) if it is raining then it is humid $= p \rightarrow q$

b) It is raining but not humid $\equiv p \land \sim q$

06. Write negations of the following statements a) Radha likes tea or coffee Using $\sim (p \lor q) \equiv \sim p \land \sim q$ Negation : Radha does not like tea and does not like coffee b) $\exists x \in R$ such that $x + 3 \ge 10$ Negation : $\forall x \in R$, x + 3 < 10**07.** Evaluate : $\int \frac{x+1}{x(x+\log x)} dx$ Put $x + \log x = t$ SOLUTION : $1 + \frac{1}{x} \cdot dx = dt$ $\frac{x+1}{x} \cdot dx = dt$ $=\int \frac{1}{t} dt$ $= \log | t | + c$ $= \log |x + \log x| + c$ **08.** Solve the equations x + y = 4 & 2x - y = 5 using method of REDUCTION SOLUTION : $\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ R2 + R1 $\begin{pmatrix} 1 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 9 \end{pmatrix}$ $\begin{bmatrix} x + y \\ 3x \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$ By Equatlity of Matrices , 3x = 9 $\therefore x = 3$ x + y = 4subs x = 3 \therefore y = 1

Q2. (A) Attempt any TWO of the following

01. Solve the following equations by the i 2x + 3y = -5 and $3x + 3y = -5$	nversion method y = 3
STEP 1 :	
$ \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} $	
AX = B	
$A^{-1}AX = A^{-1}B$	
$IX = A^{-1}B$	
$X = A^{-1}B$	
STEP 2: $AA^{-1} = I$	$I.A^{-1} = \frac{1}{7} \begin{pmatrix} 3 & -1 \\ -2 & 3 \end{pmatrix}$
$ \begin{pmatrix} 3 & 1 \\ 2 & 3 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	$A^{-1} = 1 \begin{bmatrix} 3 - 1 \end{bmatrix}$
$R_1 - R_2$	7 [- 2 3]
$ \begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} $	STEP 3 : $X = A^{-1}B$
R2 - 2R1	$= \frac{1}{7} \begin{pmatrix} 3 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ -5 \end{pmatrix}$
$ \begin{pmatrix} 1 & -2 \\ 0 & 7 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} $	$= \frac{1}{9} \left(9 + 5 \right)$
R2/7	7 [-6-15]
$ \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 1 & -1 \\ -\frac{2}{7} & \frac{3}{7} \end{pmatrix} $	$= \frac{1}{7} \begin{pmatrix} 14\\ -21 \end{pmatrix}$
$ \begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix} A^{-1} = \frac{1}{7} \begin{bmatrix} 7 & -7 \\ 0 & -2 \end{bmatrix} $	$ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} $
	BY EQUALITY OF MATRICES
$R_1 + 2 R_2$	x = 2 & x = 3
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ -2 & 3 \end{bmatrix}$	$x - z \propto y = -3$

(06)

02. Using the truth table , examine whether the statement pattern

is a tautology , a contradiction or a contingency

SOLUTION	:	р	q	p ^ d	~(p^q)	p ∨ ~(p∧q)
		Т	Т	Т	F	Т
		Т	F	F	Т	Т
		F	Т	F	Т	Т
		F	F	F	Т	Т

Conclusion : Since all the values in the last column are 'T' , the given statement is TAUTULOGY

03. if the demand function is $D = 50 - 3p - p^2$. Find the elasticity of demand at p = 5Also comment on the result

SOLUTION

STEP 1: D = $50 - 3p - p^2$.

$$\frac{dD}{dp} = -3 - 2p$$

STEP 2: $\eta = -P$. dD D dp

$$= - \frac{p}{50 - 3p - p^2} \cdot (-3 - 2p)$$

$$= \frac{3p + 2p^2}{50 - 3p - p^2}$$

STEP 3:
$$\eta \mid p = 5$$

$$= \frac{3(5) + 2(5)^2}{50 - 3(5) - (5)^2}$$

$$= \frac{15 + 2(25)}{50 - 15 - 25}$$

$$= \frac{65}{10}$$

$$= 6.5 > 1$$

Demand is relatively elastic

Page 5 of 26

$$= x \cdot \log(1 + x^2) - 2 \int 1 - \frac{1}{1 + x^2} dx$$

= x.
$$\log(1 + x^2)$$
 - 2 $(x - \tan^{-1}x)$ + c

=
$$x \cdot \log(1 + x^2) - 2x + 2\tan^{-1}x + c$$

03. The total cost of producing x units is \Box (x² + 60x + 50) and the price per unit is \Box (180 - x). For what units the profit is maximum <u>solution</u>

STEP 1 :

R = p.x= (180 - x).x = 180x - x²

PROFIT

$$\pi = R - C$$

$$\pi = 180x - x^{2} - (x^{2} + 60x + 50)$$

$$\pi = 180x - x^{2} - x^{2} - 60x - 50$$

$$\pi = 120x - 2x^{2} - 50$$

STEP 2 :

$$\frac{d\pi}{dx} = 120 - 4x$$
$$\frac{d^2\pi}{dx^2} = -4$$

STEP 3 :

$$\frac{d\pi}{dx} = 0$$

$$120 - 4x = 0$$

$$120 = 4x$$

$$x = 30$$

STEP 4 :

$$\frac{\mathrm{d}^2\pi}{\mathrm{d}x^2} \begin{vmatrix} z & z & z \\ z & z & z \end{vmatrix} = -4 < 0$$

Profit is maximum at x = 30

Q3.	(A)	Attempt any TWO of the following		(06)
	01.	Write Converse – Contrapositive & I statement	nverse statements for the given	conditional
		If the triangles are not congruent the	n meir areas are not equal	UJJA
		SOLUTION :		
		LET $\mathbf{P} \rightarrow \mathbf{Q} \equiv$ if the triangles are not co	ongruent then their areas are not equ	
		$CONVERSE : \underline{Q \rightarrow P}$		
		If the areas of triangles are not equal then	they are not congruent	
		CONTRAPOSITIVE : $\sim Q \rightarrow \sim P$		
		If the areas of the triangles are equal then	they are congruent	
		INVERSE : $\sim P \rightarrow \sim Q$		
		If the two triangles are congruent then the	ir areas are eaual	
	02.	find a & b if f(x) is continuous at x = 0 &	f(1) = 2 where ;	
		$f(x) = x^3 + a + b$; $x \ge 0$		
		$= 2\sqrt{x^3 + 1} + \alpha$; x < 0		
		SOLUTION :		
		Lim f(x)	STEP 4	
		x→0+	Since f is continuous at $x = 0$	
		$= \lim_{x \to 0} x^3 + a + b$	$\lim_{x \to 0^-} 1(x) = \lim_{x \to 0^+} 1(x) = 1(0)$	
		$= 0^2 + a + b = a + b$	2 + b = a + b = a + b	
		STEP 2	2 + b = a + b	
		$\lim_{x \to 0^{-}} f(x)$	a = 2	
		= Lim $2\sqrt{x^3 + 1} + b$	STEP 5	
		x→0	f(1) = 2	
		$= 2\sqrt{0^3 + 1} + b$	$1^{2} + a + b = 2$	
		= 2 + b	a + p = 1	
		STEP 3	Sub a = 2	
		$f(0) = 0^2 + a + b$	2 + b = 1	
		= a + b	b = -1	

03. if $y = 5^{x} + x^{x}$; find dy dx SOLUTION : $v = 5^{x}$ y = U + v $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dv} \dots \dots \dots (1)$ Differentiating wrt x $dv = 5^{x}.log5$ Now dx $\cup = x^{X}$ Hence Taking log on both sides $\frac{dy}{dx} = x^{x} (1 + \log x) + 5^{x}.\log 5$ Log u = x . log xdx $\frac{1}{\upsilon} \frac{d\upsilon}{dx} = x \frac{d}{dx} \log x + \log x d x$ $\frac{1}{\upsilon} \frac{d\upsilon}{dx} = x \cdot \frac{1}{x} + \log x \cdot 1$ $\frac{1}{\upsilon} \frac{d\upsilon}{dx} = 1 + \log x$ $\frac{du}{dx} = u (1 + \log x)$

(B) Attempt any TWO of the following

 $\pi/3$ 01. $\int_{\frac{\pi}{6}} \frac{\cot x}{1 + \cot x} dx$ $I = \int_{-\infty}^{\pi/3} \frac{\cos x}{\cos x + \sin x} \, dx \quad \dots (1)$ **USING** $\int_{a}^{b} f(x) dx = \int_{b}^{b} f(a + b - x) dx$ $I = \int_{-\infty}^{\pi/3} \frac{\cos(\pi/2 - x)}{\cos(\pi/2 - x) + \sin(\pi/2 - x)} dx$ $I = \int \frac{\sin x}{\sin x + \cos x} dx \quad ... (2)$ (1)+(2) $2I = \int \frac{\sin x + \cos x}{\sin x + \cos x} dx$ π⁄3 $2I = \int_{\pi/6} I dx$ $2I = \left(x \right)_{\pi/6}^{\pi/3}$ $2I = \frac{\pi}{3} - \frac{\pi}{6}$ $2I = \frac{2\pi - \pi}{6}$ $2I = \frac{\pi}{6}$ $I = \frac{\pi}{12}$

(08)

Q3B

4

	03. Find the inverse of the matrix A by usir	$hg \text{ ADJOINT METHOD}, A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$
SOLUT	ION :	
COFA	CTOR'S	
A11	$= (-1)^{1+1} \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} = 1(2-6) = -4$	ADJ A
A ₁₂	$= (-1)^{1+2} \begin{vmatrix} 0 & 3 \\ 1 & 1 \end{vmatrix} = -1(0-3) = 3$	= TRANSPOSE OF THE COFACTOR MATRIX = $\left(-4 2 -2\right)$
A ₁₃	$= (-1)^{1+3} \begin{vmatrix} 0 & 2 \\ 1 & 2 \end{vmatrix} = 1(0-2) = -2$	$ \left[\begin{array}{ccc} 3 & 0 & -3 \\ -2 & -2 & 2 \end{array} \right] $
A21	$= (-1)^{2+1} \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} = -1(0-2) = 2$	$ \mathbf{A} $ = 1(2-6) - 0(0 - 3) + 1(0 - 2) = 1(-4) - 0(-3) + 1(-2)
A22	$= (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 1(1-1) = 0$	= -4 + 0 - 2 $= -6$
A ₂₃	$= (-1)^{2+3} \begin{vmatrix} 1 & 0 \\ 1 & 2 \end{vmatrix} = -1(2-0) = -2$	$\mathbf{A^{-1}} = \underline{1}_{ A } \cdot \operatorname{adj} A$
A31	$= (-1)^{3+1} \begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = 1(0-2) = -2$	$= \frac{1}{-6} \begin{pmatrix} -4 & 2 & -2 \\ 3 & 0 & -3 \\ -2 & -2 & 2 \end{pmatrix}$
A32	$= (-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 0 & 3 \end{vmatrix} = -1(3-0) = -3$	$= \frac{1}{6} \begin{pmatrix} 4 & -2 & 2 \\ -3 & 0 & 3 \\ 2 & 2 & 2 \end{pmatrix}$
A33	$= (-1)^{3+3} \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 1(2-0) = 2$	
COFA	CTOR MATRIX OF A	
	$= \begin{pmatrix} -4 & 3 & -2 \\ 2 & 0 & -2 \\ -2 & -3 & 2 \end{pmatrix}$	

SECTION - II
Q4. (A)Attempt any six of the following
11. the pdf of continuous random variable X is given by

$$f(x) = \frac{x}{4}$$
; $0 < x < 2$
 $= 0$; otherwise Find $P(X \le 1)$
Solution:
 $P(x \le 1) = \int_{0}^{1} \frac{x}{4} dx$
 $= \left(\frac{x^2}{8}\right)_{0}^{1}$
 $= \left(\frac{1}{8}\right) - \left(\frac{0}{8}\right)$
 $= -\frac{1}{8}$

02. What is the sum due of Rs 5,000 due 4 months hence at 12.5% p.a. simple interest **SOLUTION** :

F.V. = P.W.+ INT ON P.W. FOR 4 MONTHS @12.5% p.a.

 $F.V. = 5000 + 5000 \times \frac{4}{12} \times \frac{12.5}{100}$

 $F.V. = 5000 + 5000 \times \frac{1}{3} \times \frac{125}{1000}$

F.V. = 5000 + 208.33

 $F.V. = \Box 5208.33$

Values of two regression coefficients between the variables X and Y are byx = -0.4 and
 bxy = -2.025 respectively. Obtain the value of correlation coefficient

$$r^{2} = byx x bxy$$

$$r^{2} = -0.4 x -2.025$$

$$r^{2} = \frac{4}{10} x \frac{2025}{1000}$$

$$r^{2} = \frac{8100}{10000}$$

$$r^{2} = \frac{81}{100}$$

$$r = \pm \frac{9}{10}$$

$$r = -\frac{9}{10}$$
 (byx & bxy are -ve)

04. Raghu, Madhu and Ramu started a business in partnership by investing ₹ 60,000, ₹ 40,000 and ₹ 75,000 respectively. At the end of the year they found that they have incurred a loss of ₹ 24,500. Find how much loss MADHU had to bear

SOLUTION

STEP 1 :

Loss will be shared in the 'RATIO OF THE INVESTMENT'

	RAHGU		MADHU		RAMU		
=	60,000	:	40,000	:	75,000		
=	60	:	40	:	75		
=	12	:	8	:	15 TO	TAL	= 35
STEP 2 : LOSS =	□ 24,50	0					
Raghu's	share of	lo	ss = <u>12</u> 35	_ x	24,500	=	₹8,400
Madhu':	s share o	f Ic	oss = <u>8</u> 35	_x 2	24,500	=	₹ 5,600
Ramu's	share of	los	$s = \frac{15}{35}$	_ x	24,500	=	₹10,500

05. Compute the age specific death rate for the following

Age Group	Population	No. of deaths	SDR = <u>D</u> X 1000 P	
0 - 10	11,000	220	$\frac{220}{11000} \times 1000 = 20$	
10 - 20	12,000	240	$\frac{240}{12000} \times 1000 = 20$	
20 - 60	9000	180	$\frac{180}{9000}$ x 1000 = 20	
60&above	2,000	90	$\frac{90}{2000}$ x 1000 = 45	DEATHS PER 000

06.X = x-101P(x)-0.210.2

Verify whether the above function can be regarded as p.m.f.

p(-1) = -0.2 Since $p(x) \ge 0 \forall x$, the above function is NOT a pmf

07. MARGINAL FREQUENCY DISTRIBUTION OF AGE OF HUSBANDS

CI	20 - 30	30 - 40	40 - 50	50 - 60	TOTAL
F	5	20	44	24	93

CONDITIONALMARGINAL FREQUENCY DISTRIBUTION OF AGE OF HUSBANDS WHEN AGE OF WIVES LIES IN 25 - 35

CI	20 - 30	30 - 40	40 - 50	50 - 60	TOTAL
F	0	10	25	2	37

08. from the regression equations : 2x - y - 15 = 0 & 3x - 4y + 25.

find \overline{x} and \overline{y}

 $\overline{x} = 17$, $\overline{y} = 19$

Q5. (A) Attempt any Two of the following (06) 01. a lot of 100 pens contain 10 defective pens. 5 pens are selected at random from the lot and sent to the retail store. What is the probability that the store will receive at least one defective pen SOLUTION 5 pens are selected at random , n = 5For a trial Success – a defective pen p - probability of success = 10/100 = 1/10 q - probability of failure = 1 - 1/10 = 9/10r.v. X - no of successes = 0, 1, 2, 3, 4, 5 $X \sim B(5, 1/10)$ P(at least 1 defective pen) $= P(X \ge 1)$ $= P(1) + P(2) + \dots + P(5)$ = 1 - P(0)= $1 - {}^{5}C_{0} \cdot p^{0} \cdot a^{5}$ $= 1 - {}^{5}C_{0}\left(\frac{1}{10}\right)^{0}\left(\frac{9}{10}\right)^{5}$ = 1 - 59049 100000 = 1 - 0.59049 = 0.4095102. in a town,10 accidents take place in a span of 50 days. Assuming that the number of accidents follow Poisson Distribution, find the probability that there will be one or accidents per day $(e^{-0.2} = 0.8187)$ more SOLUTION m = average number of accidents per day = 10/50 = 0.2r.v X = number of accidents in a day , $X \sim P(0.2)$ P(one or more accidents per day) $= P(x \ge 1)$ = 1 - P(0) $= 1 - \frac{e^{-0.2.0.20}}{0!} \qquad \text{Using } P(x) = \frac{e^{-m.m^{x}}}{x!}$ $= 1 - e^{-0.2}$. (1) = 1 - 0.8187 = 0.1813

03. A bill of ₹ 4,800 was drawn on 9th March 2006, at 6 months and was discounted on 19th April 2006 at 6 ¹/₄ % p.a. How much does the banker charge and how much does the holder receive.

SOLUTION

STEP 1 :

STEP 2 :

Unexpired period

=	19 th April – 12 th September
	APR MAY JUN JUL AUG SEP
=	11 + 31 + 30 + 31 + 31 + 12
=	146 days
STEP 3	:
B.D. =	Int. on F.V. for 146 days @ 25/4% p.a.

$$= 4800 \times 146 \times 25$$

365
5
400
= ₹ 120

STEP 4 :

C.V. = F.V. - B.D. = 4800 - 120 = ₹ 4,680

(B) Attempt any Two of the following

01. Property valued at ₹ 7 lakh is insured to the extent of ₹ 5,60,000 at 5/8 % less 20%. How much loss does the owner bear including premium if the property is damaged to the extent of 40% of its value

Solution

Property value	=	₹ 7,00,000
Insured value	=	₹ 5,60,000
Rate of premium	=	5/8 % less 20%.
Premium	=	<u>5</u> × 5,60,000 800
	=	₹ 3,500
less 20% disc		- 700
Net Premium	=	₹ 2,800
Loss	=	40 × 7,00,000
	=	₹ 2,80,000
Claim	=	insured val. x loss Property val.
	=	<u>5,60,000</u> × 2,80,000 7,00,000
	=	₹ 2,24,000
Loss	=	2,80,000
Less claim		- 2,24,000
Net loss	=	56,000
Add premium		+ 2,800
Net loss		
Incl. premiun	n =	₹ 58,800

Q5B

(08)

AGE X	lx	$d\mathbf{x} = l\mathbf{x} - l\mathbf{x} + 1$	$qx = \frac{dx}{/x}$	px = 1 – qx	$Lx = \frac{/x + /x + 1}{2}$	Тх	$e_x^0 = Tx$
0	1000	1000 - 940= 60	$\frac{60}{1000} = 0.06$	1 - 0.06 = 0.94	940 + 30 = 970	2835	$\frac{2835}{1000} = 2.835$
1	940	940 - 780 = 160	$\frac{160}{940}$ = 0.17	1 - 0.17 = 0.83	780 + 80 = 860	1865	$\frac{1865}{940} = 1.985$
2	780	780 - 590 = 190	$\frac{190}{780}$ = 0.24	1 - 0.24 = 0.76	590 + 95 = 685	1005	$\frac{1005}{780} = 1.288$
3	590	590 - 25 = 565	$\frac{565}{590} = 0.96$	1 - 0.96 = 0.04	25+ 282.5= 307.5	320	$\frac{320}{590} = 0.5423$
4	25	25 - 0 = 25	$\frac{25}{25} = 1$	1 - 1 = 0	0 + 12. 5 = 12.5	12.5	$\frac{12.5}{25} = 0.5$
5	0						
CALCU	JLATION	IS FOR 'qx'			LOG CALCULATIONS F	or 'ex ⁰ '	

LOG 565 – LOG 590

2.7520

0.9574

- 2.7709

AL 1.9811

LOG 160 - LOG 940

2.2041

2.9731

0.1702

AL 1.2310

LOG 190 - LOG 780

2.2788

0.2436

- 2.8921

AL 1.3867

02. given the following table which relates to the number of animals of a certain species at age x. Complete the life table

LOG 1865 – LOG 940 LOG 1005 – LOG 780

3.0021

- 2.8921

AL 0.1100

1.288

3.2707

- 2.9731

AL 0.2976

1.985

LOG 320 - LOG 590

2.5051

0.5423

- 2.7709

AL 1.7342

03.

A production unit makes special type of metal chips by combining copper and brass. The standard weight of the chip must be at least 5 gm. The basic ingredients copper and brass cost ₹ 8 and ₹ 5 per gm. The durability considerations dictate that the metal chip must not contain more than 4 gm of brass and should contain minimum 2 gm of copper .Find the minimum cost of the metal chip satisfying the above conditions

Let copper input = x gm

Brass input = y gm

CONSTRAINT

1. since standard weight of the chip must be at least 5 gm ;

 $x + y \ge 5$

- 2. since metal chip must not contain more than 4 gm of brass and should contain minimum 2 gm of copper $x \ge 2$; $y \le 4$
- 3. since x & y are inputs in gm , cannot be ve ; x , $y \ge 0$

OBJECTIVE FUNCTION

copper and brass cost \square 8 and \square 5 per gm

total cost = 8x + 5y (in \Box)

∴ Minimize z = 8x + 5y

LPP MODEL

Minimize z = 8x + 5y, Subject to

 $x \ + \ y \ \geq \ 5 \ ; \ \ x \ \geq \ 2 \quad ; \quad y \ \leq \ 4 \ ; \ \ x \ , \ y \ \geq \ 0$

<u>OPTIMAL SOLUTION</u>: metal chip should contain 2 gm of copper and 3 gm of brass to keep the cost minimum to ₹ 31 01. P and Q started a business with capitals in the ratio 4 : 3 . After 9 months P withdrew 25% of his capital and Q put in an equal amount in addition to his earlier capital . If at the end of the year P's share in the profit was ₹ 15,450 , find the total profit and Q's share of profit

SOLUTION

PARTNER's NAME	CAPITAL INVESTED	PE IN	RIOD OF VESTMENT
Р	₹4k - 25%	9	MONTHS
	₹ 3k	3	MONTHS
Q	₹3k + k	9	MONTHS
	₹4k	3	MONTHS

STEP 1:

Profits will be shared in the

'RATIO OF PRODUCT OF CAPITAL INVESTED & PERIOD OF INVESTMENT'

	Р		Q
=	4k x 9 + 3k x 3	:	3k x 9 + 4k x 3
=	36k + 9k	:	27k + 12k
=	45k	:	39k
=	15	:	13 TOTAL = 28
STEP	2:		
P sha	re of profit		= ₹15,450
P's sh	are of profit		$= \frac{15}{28} \times \text{Total Profit}$
	15,450		$= \frac{15}{28} x \text{ Total Profit}$
	Total Profit		1030 = <u>-15450 × 2</u> 8 -15-
			= ₹28,840
Q's sh	are of profit		$= \frac{1030}{-28} \times \frac{28,840}{-28}$
			= ₹13,390

Q6A

02. find k if following is a pdf of r.v. X f(x) = kx(1 - x); 0 < x < 1= 0 ; otherwise Also P(1/4 < X < 1/2)SOLUTION $\int_{0}^{1} kx(1-x) dx = 1$ $k \int_{0}^{1} (x - x^2) dx = 1$ P(1/4 < x < 1/2) $k \left(\frac{x^2 - x^3}{2 - 3}\right) = 1$ $^{1}/_{2}$ $= \int_{1/4}^{1/2} 6x(1-x) dx$ $k\left(\frac{1}{2} - \frac{1}{3}\right) = 1$ $= \int_{\frac{1}{4}}^{\frac{1}{2}} (6x - 6x^2) dx$ $k\left(\frac{1}{6}\right) = 1$ $= \left(\frac{6x^2}{2} - \frac{6x^3}{3}\right)^{1/2}$ k = 6 Hence, pdf of the r.v.x is given as $= \left(3x^2 - 2x^3 \right)^{1/2}$ f(x) = 6x(1 - x); 0 < x < 1= 0 ; otherwise = $\left(\frac{3}{4}, -\frac{2}{8}\right)$ - $\left(\frac{3}{16}, -\frac{2}{64}\right)$ = $\left(\frac{3}{4}, -\frac{1}{4}\right)$ - $\left(\frac{3}{16}, -\frac{1}{32}\right)$ = $\frac{2}{4}$ - $\frac{6-1}{32}$ = $\frac{1}{2} - \frac{5}{32}$ $= \frac{16-5}{32}$ 11 = 32

03. $\Sigma x = 56$, $\Sigma y = 56$, $\Sigma x^2 = 476$, $\Sigma y^2 = 476$, $\Sigma xy = 469$ and n = 7 find a) Regression equation of y on x b) estimate y when x = 12

8

SOLUTION

$$\overline{x} = \underline{\Sigma x} = \frac{56}{7} = 8 , \quad \overline{y} = \underline{\Sigma y} = \frac{56}{7} = \frac{7}{7} = \frac{56}{7} = \frac{56}{7} = \frac{7}{7} = \frac{56}{7} = \frac{56}{7} = \frac{56}{7} = \frac{7}{7} = \frac{56}{7} = \frac{56}{7}$$

EQUATION

$$y - \overline{y} = byx (x - \overline{x})$$

$$y - 8 = 0.75(x - 8)$$

$$y - 8 = 0.75x - 6$$

$$y = 0.75x + 2$$

Put x = 12

$$y = 0.75(12) + 2$$

$$y = 9 + 2$$

$$y = 11$$

(B) Attempt any Two of the following

01. A courier agency employs 4 persons in 4 zones of a city . The number of letters delivered in a day in each zone by each person is given

		ZONE			
		Е	W	Ν	S
	P۱	18	25	22	26
PERSONS	P ₂	26	29	26	27
	Ρ3	28	31	36	30
	P ₄	26	38	27	25

What is the optimal assignment so that maximum number of letters can be delivered and how many max no. of letters will be delivered by the agency

SOLUTION

20	13	16	8	Subtracting all the elements in the matrix by its
12	9	12	11	maximum (38) .
10	7	2	8	this matrix can now be solved for
12	0	11	13	'MINIMAL ASSIGNMENT PROBLEM'
12	5	8	0	Reducing the matrix using 'ROW MINIMUM'
3	0	3	2	
8	5	0	6	
12	0	11	13	
9	5	8	0	Reducing the matrix using 'COLUMN MINIMUM'
0	0	3	2	
5	5	0	6	
9	0	11	13	
9	5	8	0	Allocation using 'SINGLE ZERO ROW COLUMN METHOD'
0	X	3	2	
5	5	0	6	since each row contains an assigned zero , the assignment
9	0	11	13	problem is solved

OPTIMAL ASSIGNMENT

 $P_1 - S$, $P_2 - E$, $P_3 - N$, $P_4 - W$, Max letters delivered = 26 + 26 + 36 + 38= 126 (08)

6B

02. you are given below the following information about Profit rate (X) and growth rate (Y)

	Х	Y	
Mean	20	25	
Variance	9	25	correlation coeff. = 0.9 .

a) Obtain the regression line of X on Y

b) Estimate the growth rate when the profit rate is 16%

SOLUTION

Y on X	X on Y
byx = $r \cdot \frac{\sigma y}{\sigma x}$	bxy = $r \frac{\sigma x}{\sigma y}$
$= 0.9 \frac{5}{3}$	= 0.9 <u>3</u> 5
= 1.5	= 0.54
Equation	Equation
$y - \overline{y} = byx (x - \overline{x})$	$x - \overline{x} = bxy(y - \overline{y})$
y - 25 = 1.5(x - 20)	x - 20 = 0.54(y - 25)
Put x = 16	x - 20 = 0.54y - 13.5
y - 25 = 1.5(16 - 20)	x = 0.54y - 13.5 + 20
y - 25 = -6	x = 0.54y + 6.5
y = 19	
Growth rate = 19% when profit Rate is 16%	

03. Compute correlation coefficient for the following data

SOLUTION

				$(1, \overline{1})^2$	$(1, \overline{1})^2$	
X	У	x-x	у-у	$(x - x)^{-}$	(y - y)-	(x - x)(y - y)
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	1	-2
30	40	0	0	40	20	-26
Σχ	Σy	$\Sigma(x-\overline{x})$	$\Sigma(y-\overline{y})$	$\Sigma(x-\overline{x})^2$	$\Sigma(y-\overline{y})^2$	$\Sigma(x-\overline{x})(y-\overline{y})$
x = 6	y = 8					

$$r = \frac{\sum (x - \overline{x}) \cdot (y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}.$$

$$r = \frac{-26}{\sqrt{40 \times \sqrt{20}}}$$

$$r = \frac{-26}{\sqrt{40 \times 20}}$$

let
r' =
$$\frac{26}{\sqrt{40 \times 20}}$$
 (Since log a , a > 0)

taking log on both sides

$$\log r' = \log 26 - \frac{1}{2} (\log 40 + \log 20)$$

$$\log r' = 1.4150 - \frac{1}{2} [1.6021 + 1.3010]$$

$$\log r' = 1.4150 - \frac{1}{2} (2.9031)$$

$$\log r' = 1.4150 - 1.4516$$

$$\log r' = \overline{1.9634}$$

$$r' = AL(\overline{1.9634})$$

$$r' = 0.9191$$

$$r = -0.9191$$